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We give a simple introduction to the properties and use of ultrastable optical cavities, which are

increasingly common in atomic and molecular physics laboratories for stabilizing the frequency of

lasers to linewidths at the kHz level or below. Although the physics of Fabry–Perot interferometers

is part of standard optics curricula, the specificities of ultrastable optical cavities, such as their high

finesse, fixed length, and the need to operate under vacuum, can make their use appear relatively

challenging to newcomers. Our aim in this work is to bridge the gap between generic knowledge

about Fabry–Perot resonators and the specialized literature about ultrastable cavities. The intended

audience includes students setting up an ultrastable cavity in a research laboratory for the first time

and instructors designing advanced laboratory courses on optics and laser stabilization techniques.
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I. INTRODUCTION

Over the past two decades, optical clocks have revolution-
ized frequency standards, now achieving fractional accura-
cies in the 10�18 range.1–4 Crucial to reaching such
performance are interrogation lasers whose frequencies are
stabilized through the use of high-finesse, ultrastable cavi-
ties. Similar cavities are also used for gravitational wave
interferometers.5 More recently, beyond the field of metrol-
ogy, these ultrastable cavities have become increasingly
widespread in atomic and molecular physics laboratories for
addressing narrow transitions. Cavities based on ultralow
expansion (ULE) glass spacers, which once required com-
plex custom developments, are now commercially available,
making it relatively easy to reach linewidths of a few kilo-
hertz (corresponding to a quality factor Q � 1011). These
cavities facilitate research in a wide range of areas, including
quantum gases, molecular physics, and Rydberg atoms.

Although the physics of Fabry–Perot interferometers is
commonly taught in undergraduate optics curricula, the dis-
tinct characteristics of such ultrastable cavities (high finesse
in the tens of thousands, operation under vacuum, choice of
spacer material, temperature stability, importance of realiz-
ing a proper mode-matching) are rarely covered, leading to a
knowledge gap for students and researchers when it comes to
setting one up for the first time. In this article, we aim to pro-
vide a concise introduction to the physics of ultrastable,
high-finesse cavities, with the goal of bridging the gap
between general knowledge of Fabry–Perot resonators and

the practical use of an ultrastable cavity in a laboratory
setting. For more detailed introductions along similar lines,
we refer readers to Refs. 6 and 7.

The article is structured as follows. In the first part, we
provide background on the practical requirements of ultrasta-
ble cavities to achieve ultralow fluctuations of the resonance
frequencies. In the second part, we explain how to setup an
ultrastable cavity in practice, including mode-matching,
implementing a Pound–Drever–Hall lock, and measuring the
finesse of the cavity. We conclude with a discussion on why
we believe that including such a setup in an advanced
instructional laboratory course can lead to a variety of inter-
esting experiments focusing on various aspects of optics for
undergraduate students.

II. CONCEPTUAL BACKGROUND

The ultimate goal of locking a laser to an optical cavity is
to minimize its frequency fluctuations. Laser frequency fluc-
tuations are primarily due to technical noise in the laser,
such as temperature fluctuations, mechanical vibrations, or
fluctuations in the current in the case of a semiconductor
laser. Such noise, in combination with the fundamental quan-
tum noise, contributes to increase the laser linewidth.
Depending on the source of noise, the fluctuations take place
on different time scales: “fast” fluctuations, which occur on
the order of tens of microseconds; low-frequency jitter, on
timescales of milliseconds to seconds; and slow drifts of the
central laser frequency over the course of hours, days, and
weeks, due primarily to thermal effects.7,8
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A cavity helps minimize laser frequency fluctuations pri-
marily on the first two time scales by serving as a precise,
stable reference. The precision of the cavity is determined by
its resonance linewidth; narrow cavity linewidths help
reduce the fast fluctuations and jitter in the laser frequency.
The stability of the cavity determines the changes in the cen-
ter frequency of the resonances over time; high stability
allows one to reduce slow drifts of the laser’s central fre-
quency. Ultimately, slow drifts are accounted for by
referencing the stabilized laser to an atomic transition.

In this section, we start by a review of the basic physics of
optical cavities, including the relationship between linewidth
and finesse, and then turn our attention to the specific
requirements for designing an ultrastable cavity.

A. Brief review of optical cavities

1. Linewidth and finesse

A linear optical cavity consists of two mirrors whose
reflective surfaces face each other [see Fig. 1(a)].
Monochromatic light entering the cavity will be resonant

when the round-trip distance 2L is an integer multiple p of
the light’s wavelength k. For a lossless cavity on resonance,
the incoming light is fully transmitted through the cavity,
with none reflected (intensity reflection coefficient R¼ 0),
due to constructive interference of the field circulating within
the cavity and destructive interference between the reflected
field and the field leaking out the first mirror. Off resonance,
almost all light is reflected and none transmitted, due to
destructive interference in the cavity.

The frequency spacing between two successive resonances
is called the free spectral range (FSR) and is determined by
the length of the cavity,

�FSR ¼
c=n

2L
; (1)

where c is the speed of light in a vacuum, n is the refractive
index of the medium between the two mirrors, and L is the
length of the cavity. The finesse of the cavity is defined as
the ratio of the free spectral range to the full-width half-max-
imum linewidth of the resonance peaks, denoted d�, and is
determined by the reflectivity of the mirrors,8

F ¼ �FSR

d�
¼ p

ffiffiffiffiffiffiffiffi
r1r2
p

1� r1r2

: (2)

Here, r1 and r2 are the electric field reflection coefficients of
the two mirrors. From Eq. (2), one can see that the higher the
reflectivity of the mirrors, the higher the finesse. For exam-
ple, jr1j ¼ jr2j ¼ 98:4% results in a finesse of 100, while
jr1j ¼ jr2j ¼ 99:992% yields a finesse of 20 000.

Once the finesse of the cavity is fixed, the choice of cavity
length must take into account several factors: the desired
free spectral range, the resulting linewidth of the resonances,
and the practical space considerations. Commonly, ultrasta-
ble cavities used in atomic and molecular physics laborato-
ries are on the order of 10 cm long, giving �FSR ’ 1:5 GHz.
For this free spectral range, a finesse of 100 gives d�
’ 15 MHz, whereas a finesse of 20 000 gives d� ’ 75 kHz.
Since the achievable narrowing of a laser’s linewidth is a
fraction of the linewidth of the cavity’s resonance, high
finesse is an important requirement for designing cavities
that can address narrow atomic and molecular transitions.

In the time domain, the ideal linewidth of the resonances
is directly related to the 1=e decay time s of the intensity in
the cavity: d� ¼ 1=ð2psÞ, giving

F ¼ 2ps�FSR: (3)

A long cavity decay time corresponds to a high finesse and a
narrow linewidth on resonance. Measuring s provides an
accurate way to measure the finesse of the cavity of a known
length L (see Sec. III D).

2. Higher-order modes

Thus far, we have considered the resonances of an optical
cavity as depending only on the longitudinal mode of the
incoming light. This simplification is valid when considering
only the fundamental transverse mode: a pure Gaussian
beam. In reality, however, imperfect coupling of a laser into
a cavity leads to the excitation of higher-order transverse
modes, whose resonance frequencies differ from that of the
fundamental mode. These higher-order transverse modes are

Fig. 1. (a) Diagram of a planoconvex optical cavity, where R1 and R2 denote

the radii of curvature of the two mirrors. (b) Calculated Gauss–Hermite

intensity profiles for each transverse mode. For a perfectly cylindrical cavity,

modes with the same value of mþ n are degenerate in frequency, and the

transverse intensity profile in transmission can be a superposition of all

transverse modes with the same value of mþ n. (c) Calculated signal in

reflection while scanning the laser frequency slowly over three free spectral

ranges, where R represents the intensity reflection coefficient, and �00p is the

frequency of a fundamental transverse mode resonance. Each dip corre-

sponds to a cavity resonance, with the deepest dip corresponding to the fun-

damental mode. The reflection signal was calculated for a cavity with a

finesse of 100 to portray the non-zero linewidth of the resonances and a ratio

L=R2 ¼ 1=5, and the relative amplitudes were set to match the experimental

results in Fig. 5(b).
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typically of the Gauss–Hermite family and are denoted by
two integers, m and n, for the two transverse directions [Figs.
1(b) and 1(c)]. Their wave amplitudes are given by the prod-
uct of a Gaussian beam expression, two Hermite polynomials
corresponding to the two transverse directions, and a phase
term, referred to as the Gouy phase,

exp �iðmþ nþ 1Þarctanðz=zRÞ½ �; (4)

where zR is the Rayleigh range9 (see the Appendix A for the
full expression of the wave amplitude).

For a mode to be resonant in the cavity, the phase accumu-
lated during one round trip must be a multiple of 2p.
Therefore, Equation (4) determines the resonance condition,
from which one can derive the resonance frequencies to be

�mnp

�FSR

¼ pþ ðmþ nþ 1Þ
p

cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L

R1

� �
1� L

R2

� �s
; (5)

where p is an integer labeling the longitudinal mode, L is the
length of the cavity, and R1 and R2 are the radii of curvature
of the two mirrors.10 The phase factor given by Eq. (4) lifts
the frequency degeneracy of transverse modes with different
values of mþ n.

From Eq. (5), one can see that for a given transverse mode
with fixed values for n and m, the resonance frequencies of
the corresponding longitudinal modes are spaced by the free
spectral range of the cavity. For a given longitudinal mode p,
the spacing depends on the ratio between the length of the
cavity and the radius of curvature of the mirrors. With all
else held constant, increasing the ratio L=R1;2 increases the
frequency spacing between corresponding transverse modes.

The need for narrow linewidth resonances therefore relates
to the choice of mirror geometry for the cavity and explains
why, despite its frequent use in scanning Fabry–Perot cavi-
ties, a confocal geometry (L ¼ R1 ¼ R2) is not optimal for
applications where high-finesse is crucial. In a confocal
geometry, the spacing between two consecutive resonances
is given by �FSR=2, so all even higher-order modes are
degenerate with the fundamental mode. However, this
degeneracy is never perfect; higher-order modes will appear
as many small peaks close to the fundamental resonance.
These peaks increase the linewidth of the resonance and
reduce the effective finesse of the cavity. Therefore, when
designing high-finesse cavities for locking lasers, one aims
to space the resonances of the higher-order modes suffi-
ciently far away from the fundamental mode. In addition,
one wants to choose a spacing such that the higher-order
transverse modes do not overlap with any fundamental trans-
verse modes (of higher longitudinal modes). It is common to
choose a planoconvex cavity with a ratio L=R2 that gives a
frequency spacing between consecutive higher-order trans-
verse modes on the order of 100 MHz and a high least com-
mon multiple with the free spectral range.

Figure 1(c) shows an example of the calculated intensity
reflected from a cavity with a ratio L=R2 ¼ 1=5 when scan-
ning the laser over three free spectral ranges.11 The higher-
order modes are equally spaced with decreasing amplitudes
away from the fundamental mode. Calculated images of the
intensity patterns of the transverse modes are pictured in Fig.
1(b). Assuming the cavity has perfect cylindrical symmetry,
transverse modes with the same value of mþ n are degener-
ate in frequency, and the intensity pattern viewed in

transmission through the cavity is a superposition of all
modes with the same value mþ n. In practice, however, no
cavity has perfect cylindrical symmetry due to minute imper-
fections of the mirrors. These imperfections lift the degener-
acy of the transverse modes, and the corresponding
frequency splitting can be measured for cavities with suffi-
ciently high finesse.12

B. Design requirements for ultrastable cavities

In addition to having a high finesse and optimally spaced
higher-order modes, a cavity for locking lasers should be
ultrastable to avoid slow drifts of the laser frequency.
Ideally, the resonance frequency of the cavity should drift as
little as possible. Practically, it is relatively easy to achieve
variations of less than several hundred kHz over the course
of one day using a ULE spacer. As shown in Eqs. (1) and
(5), the cavity’s resonance frequencies depend primarily on
its length and the index of refraction of the medium between
the mirrors.13 The relative variation in resonance frequency
then fulfills

d�
�
� dn

n
þ dL

L
: (6)

To achieve d� < 1 MHz at optical frequencies, the relative
fluctuations d�=� should be less than 10�9.

In Secs. II B 1–4, we explain how cavities are designed to
reach such stunning stabilities.

1. Operating under vacuum

The index of refraction n of air at room temperature and
pressure is on the order of n� 1 ’ 3� 10�4. However,
atmospheric pressure depends on many factors and can vary
by up to 10% over the course of several days. Thus, with
ambient air between a cavity’s mirrors, the resulting relative
fluctuations dn=n would be on the order of 10�5, yielding an
unacceptably large value for d�=�. To eliminate these fluctu-
ations, the space in between the two cavity mirrors needs to
be evacuated. A moderate vacuum, with a residual pressure
below 10�3 mbar, reduces the relative fluctuations of the
index of refraction sufficiently.

In practice, the choice of the vacuum pump is determined
by the requirement that it introduce no vibrations to the sys-
tem. Pumps that operate using spinning parts are therefore
not good options. Instead, ion pumps are typically used as
they have no moving parts. Ion pumps easily maintain pres-
sures around 10�7 mbar without bakeout. In these conditions,
the relative fluctuations of the refractive index are on the
order of 10�14 and are thus entirely negligible.

2. Minimizing length fluctuations

The remaining frequency fluctuations arise primarily from
variations in the distance between the two mirrors. The mir-
rors are fixed to the ends of a spacer of solid material (see
Fig. 3) so that the distance between them depends on varia-
tions in the length of the spacer. Such length variations are
due primarily to changes in temperature. To first order, the
relative change in length of a material due to changes in tem-
perature is given by

dL

L
¼ aðTÞ dT; (7)
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where aðTÞ is the coefficient of thermal expansion (CTE) of
the material. To minimize length fluctuations, spacers are
made of a material with the lowest possible CTE near room
temperature. The most common choice of material is ultralow
expansion (ULE) glass, which is a compound of silica and
titanium dioxide, as its CTE is very low near room tempera-
ture and even vanishes at a so-called zero-crossing tempera-
ture TZC. The CTE and the exact value of TZC are empirically
determined for each ULE spacer, as they depend not only on
the composition of the material but also on its fabrication con-
ditions, which can vary between each production cycle.

Figure 2(a) shows the CTE of a particular batch of ULE
with a zero-crossing temperature at 30.4 �C. Usually, the
zero-crossing temperature is chosen to be slightly above

room temperature (typically around 30� 35 �C) as it is eas-
ier to maintain a constant temperature by heating than by
cooling. Resistive heaters encircle the vacuum chamber con-
taining the cavity, as shown in Fig. 3(c), maintaining temper-
ature stability better than 610 mK. As can be inferred from
Fig. 2(a), such temperature fluctuations around the zero-
crossing temperature induce relative length fluctuations for a
spacer of 10 cm on the order of 10�14. Even at a deviation of
60.5 �C from the zero-crossing temperature, the relative
length fluctuations are on the order of 10�11 and are thus
negligible.

3. Minimizing the effects of vibrations

Mechanical vibrations due to acoustic or seismic noise can
be another significant source of fluctuations of the cavity
length. For applications where one does not need to address
extremely narrow transitions (below the kilohertz range), the
effects of such vibrations can usually be neglected.
However, it is crucial to minimize their effect to reach state-
of-the-art performance for gravitational wave detectors5 or
for locking ultrastable lasers used in the operation of optical
clocks.6 This is achieved by (i) using vibration-isolation plat-
forms on which the reference cavity is mounted, and (ii)
using a clever shaping and mechanical suspension of the cav-
ity that minimizes the influence of a given level of vibrations
on the cavity length. Several approaches exist, ultimately
relying on finite-element modeling of the cavity response to
accelerations.14 In this section, we illustrate this type of
vibration mitigation on a conceptually simple case, namely
that of a midpoint vertically suspended cavity, a configura-
tion often used in actual setups to minimize sensitivity to
vertical vibrations.

Figure 2(b) shows three possible ways to hold a vertical
cavity spacer of length L: it can (i) rest on the bottom, (ii) be
hanging from the top, or (iii) be suspended midpoint. Now
suppose the cavity is subjected to vertical vibrations. For fre-
quencies much lower than the mechanical resonance fre-
quency of the spacer, the change DL of the cavity length due

Fig. 3. (a) Photo showing the ULE glass spacer and mirrors of an ultrastable cavity (image courtesy of Stable Laser Systems). The pump-out hole for evacuat-

ing the cavity is visible on the left. (b) Photo of our SLS cavity showing both the Zerodur support and the radiation shield. (c) Diagram of the cross section of

an SLS ultrastable cavity. The ULE glass spacer is supported by fluororubber balls for thermal and vibrational insulation and is surrounded by a radiation

shield. The radiation shield rests on a support in Zerodur, which is supported on the walls of the vacuum chamber. Around the vacuum chamber, heating ele-

ments maintain the inside at a constant temperature. The external enclosure surrounds thermal insulation around the vacuum chamber. (d) Photo of our setup

showing the external enclosure of the cavity connected to the ion pump as well as the camera and photodiode for measuring the signal in transmission.

Fig. 2. (a) Coefficient of thermal expansion (CTE) and thermal expansion

vs. temperature for a batch of ultralow expansion (ULE) glass with a zero-

crossing temperature TZC ¼ 30:4 �C. At TZC, the relative length fluctuations

for a spacer of length 10 cm are on the order of 10�14 for temperature fluctu-

ations of 610 mK. (b) A simple setting illustrating the influence of vibra-

tions on the length of a cavity, and how this can be mitigated by a proper

choice of the suspension. A vertical cavity, of length L in the absence of

acceleration, is either supported from the bottom (i), suspended from the top

(ii), or suspended at the midpoint (iii). When the cavity undergoes an

upward acceleration a, its length decreases in the first case (iv) and increases

in the second case (v). For the midpoint suspension, the upper part of the

cavity gets compressed, while the lower part gets elongated, resulting in an

overall unchanged cavity length.
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to an upward acceleration a can be calculated in the quasi-
static case. In case (i), the cavity length decreases by a quan-
tity, which can be shown to be DL ¼ aqL2=ð2EÞ, where q is
the density of the spacer material, and E its Young’s modu-
lus [Fig. 2(b), panel (iv)]. For the case of a spacer hanging
from the top, the same acceleration would produce an
increase in length [Fig. 2(b), panel (v)], by the same quantity.
Thus, if the cavity is suspended in the middle, its top part
contracts, while its lower part extends by the same length,
resulting in a vanishing net change in the spacer length [Fig.
2(b), panel (vi)].

4. Recent developments in ultrastable cavity design

Another important effect that impacts the stability of a
cavity is thermal noise. Even for a perfectly stable tempera-
ture T, the spacer, mirror substrates, and mirror coatings
undergo Brownian fluctuations that lead to noise in the effec-
tive cavity length scaling as

ffiffiffi
T
p

. For state-of-the-art optical
clocks, this noise is a major limitation. The current strategy
to circumvent this problem is to use a cryogenic cavity with
a spacer made of a single crystal silicon held at its zero-
crossing temperature of 16 K.15,16 This approach, which is
obviously quite involved technically, has two main advan-
tages: (i) at cryogenic temperatures, thermal fluctuations are
drastically reduced relative to those at room temperature;
and (ii) using a single crystal nearly eliminates long-term
length drift (“aging”) of the spacer, due to the crystal’s
almost-perfect lattice structure.

III. ULTRASTABLE CAVITIES IN PRACTICE

We now turn to the practical implementation of a room-
temperature ultrastable ULE cavity for locking a 780 nm
external cavity diode laser (ECDL). In this work, we use an
ultrastable cavity from Stable Laser Systems (SLS) that we
previously used for two-photon Rydberg excitation of single
Rb atoms.17 Since this application required laser linewidths
only on the order of tens of kilohertz, our cavity is horizon-
tally rather than vertically suspended and kept near room
temperature. It has a nominal finesse of 25 200 at 780 nm,
and a free spectral range of 1.5 GHz.

A. Experimental setup

Figure 3 shows a cross-sectional diagram and photos of
our cavity. A cylindrical spacer made of ULE glass separates
the two cavity mirrors fixed on either end. A long, cylindrical
hole is bored through the center of the spacer and maintained
under vacuum via a pump-out hole. The spacer rests on four
Viton balls supported by a V-shaped Zerodur support. The
Viton balls minimize both vibrational and thermal couplings
to the external environment. A radiation shield surrounds the
spacer, resting on the Zerodur support, to minimize radiative
heat transfer. This entire ensemble is enclosed in a vacuum
chamber pumped typically to 10�7 mbar using a 10 l=s ion
pump. The Zerodur support rests on the inner walls of the
vacuum chamber. The whole chamber is maintained at the
zero-crossing temperature of our spacer (34.49 �C) using
resistive heating elements and a PID controller (Wavelength
Electronics, LFI-3751). Outside the vacuum chamber is fur-
ther thermal insulation, surrounded by a final external
enclosure.

B. Mode matching

Our cavity is planoconvex, as depicted in Fig. 1(a), with a
radius of curvature R2 ¼ 500 mm and length L¼ 100 mm.
To mode-match the incoming beam with the fundamental
Gaussian mode of the cavity, we must match the waist size
and position of the incoming laser beam to those of the cav-
ity’s fundamental mode. Knowing R2 and L, we can calculate
the Rayleigh range zR of the fundamental Gaussian mode of
the cavity. The radius of curvature of the Gaussian wave-
front, given by

RðzÞ ¼ zþ z2
R

z
; (8)

where z denotes the distance from the waist, must match the
mirrors’ radii of curvature. Thus, the waist position z¼ 0
coincides with that of the flat mirror, and setting RðLÞ ¼ R2

determines the Rayleigh range,

zR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðR2 � LÞ

p
: (9)

The 1=e2 radius is then given by

w0 ¼
ffiffiffiffiffiffiffi
zRk
p

r
; (10)

where k is the laser wavelength. Combining Eqs. (9) and
(10) for 780 nm gives the 1=e2 radius of our cavity’s funda-
mental mode as 223 lm.

The almost-perfectly Gaussian beam coming out of the
fiber collimator (Thorlabs, CFC-2-B), with its own waist size
and position, needs to be matched to the cavity mode using
an appropriately placed lens (or combination of lenses).
Using Gaussian optics with ABCD matrices9,18 or an online
Gaussian beam calculator,19 one can find the optimal combi-
nation of fiber collimator position, lens position, and lens
focal length. For our setup, we measure that the waist almost
coincides with the output of the fiber collimator, with a 1=e2

radius of 100 lm. We then calculate that using a single lens
of f¼ 150 mm positioned at 204 mm from the collimator and
421 mm from the plane cavity mirror is a good solution, as it
gives a reasonably compact setup.

As shown in Fig. 4, we also use a k=2 waveplate and
beamsplitter before the cavity to reduce the power of the
incident laser beam. It is important to have low power at the
input of the cavity since, on resonance, the field circulating
in the cavity has an intensity orders of magnitude greater
than the incident field, given by Icav=Iinc ¼ F=p. For our
cavity, the intracavity field is approximately 8000 times the
incident power, so we use an incident beam of �100 lW to
give<1 W within the cavity. Too much intracavity power
can temporarily deform, or even permanently damage, the
cavity mirrors.

Aligning the laser into the cavity from scratch is challeng-
ing, so it is helpful to use multiple diagnostic tools. We use a
combination of a camera in transmission and photodiode in
reflection, as shown in Fig. 4, to find and optimize the signal.
While scanning the laser frequency over more than one FSR,
we adjust the alignment of the incoming beam into the cavity
using the mirrors until we see a transmission signal on the
camera, as in Fig. 5(a). Scanning the laser frequency rela-
tively slowly (1–5 Hz) helps us to distinguish a genuine sig-
nal from background reflections, as a signal flashes on
the camera at a rate proportional to the scan frequency.
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After finding a signal, we align the photodiode in reflection.
While scanning the laser frequency, the signal on the reflec-
tion photodiode should resemble that of Fig. 5(b). The goal
is to maximize the coupling into the cavity for the fundamen-
tal Gaussian mode. To do so, we use the camera and reduce
the scan amplitude until the fundamental mode is the only
one flashing on the camera. Then, we maximize the depth of
the corresponding dip on the reflection photodiode relative to
the fully reflected signal by adjusting the coupling mirrors.

The process of coupling is iterative: if the signal after
aligning the mirrors is still sub-optimal, we slightly adjust
the position of the lens and restart the process. We aim for
the reflection dip to be � 80% of the fully reflected signal
while scanning the laser and for the higher-order modes to
be nearly nonexistent. Decreasing the scan speed helps one
achieve deeper dips in reflection, as the laser spends more
time on resonance.

Figures 5(b) and 5(c) show the intensity of the reflected
light from our cavity (after coupling, but before fully opti-
mizing into the fundamental mode) when scanning a laser
quickly over three free spectral ranges. The higher-order
modes are visible with decreasing amplitude and equally
spaced in frequency. Having previously calibrated the con-
version between the piezo scan amplitude and the change in
frequency for our laser, we measure the frequency spacing
between the different modes to be 222 MHz, which is the
same as the expected value we calculate from Eq. (5) for our
cavity. The transverse modes were imaged by a camera in
transmission and show the expected Hermite–Gaussian
intensity patterns. If the setup were perfectly cylindrically
symmetric, the modes with the same value of mþ n would
be exactly degenerate in frequency, and the intensity pattern
would be the superposition of all degenerate modes. In Fig.
5(a), the observed mode for mþ n ¼ 2 corresponds to the
superposition of the three modes shown in Fig. 1(b). The
images of other higher-order modes show less perfect super-
position due to the combined effect of imperfections in the
cavity symmetry, which lift the degeneracy of modes with
the same value of mþ n,12 and of a nonsymmetric coupling
of the incident beam, which favors some modes.

Figure 5 also shows that the signal in reflection when
scanning the laser frequency is not the expected quasi-static
response with approximately Lorentzian dips at resonance,
as sketched in Fig. 1(c). If one zooms on resonance, one
observes an asymmetric, oscillating response [Figs. 5(c) and
5(d)]. Closer inspection shows a chirped oscillation with a
decaying envelope. In Appendix B, we investigate this oscil-
lating response in more detail and show how it provides
information on the laser scan rate and cavity finesse.

C. Pound2Drever2Hall locking of the laser

We now turn to locking the laser to our ultrastable cavity
using the Pound�Drever�Hall (PDH) technique. In short, the
PDH technique generates an error signal with a large capture
range. This is achieved by using phase modulation at a fre-
quency fmod to create sidebands on the laser light; when the
carrier is not exactly resonant with the cavity, it is partially
reflected and beats with the reflected sidebands. The PDH error
signal is derived from the amplitude of this beat note, and the
capture range is given by 6fmod. For an in-depth explanation
of the concepts underlying PDH locking, we refer readers to
the excellent introduction in Ref. 20. In the following, we
focus on the practical implementation of the PDH lock.

Our setup is depicted in Fig. 6(a). As the local oscillator
for generating the PDH signal, we use an arbitrary function
generator at fmod ¼ 20 MHz to drive a fiber EOM that modu-
lates the phase of the laser light.21 The reflection photodiode
signal is amplified and mixed with a phase-shifted version of
the 20 MHz modulation and then lowpass filtered before

Fig. 4. Simple optical setup for coupling light into a cavity with photodiodes

in reflection and transmission. In our setup, we use a lens with f¼ 150 mm

for mode matching.

Fig. 5. Measured reflection coefficient R from cavity while scanning the

laser frequency quickly over approximately three free spectral ranges. (a)

Cavity modes imaged in transmission through the cavity, where m and n
denote the integers labelling the transverse modes TEMm,n. The gain and

exposure time of the camera were increased to image each successive mode,

so the relative intensity is not comparable between images. (b) Full scan

over three FSR. Here, the coupling into the cavity was purposely not opti-

mized into the fundamental mode to enhance the visibility of the higher-

order modes. In (c), we decrease the time scale by a factor of approximately

10 and center on the first two modes depicted in (b). Here, it starts to become

noticeable that the resonance dips and peaks have non-zero linewidths. From

(c) to (d), we decrease the time scale by a factor of approximately 30 and

center on the fundamental mode. The reflection signal decreases on reso-

nance, here to approximately 85% of complete reflection. It then increases

past 115% reflection and oscillates at an increasing frequency with an ampli-

tude that decays exponentially. Here, the cavity resonance FWHM is

d� ’ 60 kHz, corresponding to a 1=e decay time of s ¼ 2:7 ls, and we scan

the laser frequency at a rate of approximately 900 MHz=ms.
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being fed into the proportional-integral-derivative (PID) con-
troller. The error signal from the Error Monitor output of our
PID controller is shown in Fig. 6(b). We optimize the phase
of the local oscillator by first finding the phase that mini-
mizes the error signal peaks and then adding 90�. We then
adjust the DC offset on the PID controller such that the base-
line of the error signal is at 0 V. To lock the laser, we slowly
decrease the scan amplitude to zero while adjusting the laser
frequency to stay centered on the middle error signal peak.
We then activate the lock. To check whether the laser
remains locked on resonance or not, we monitor the signal
from the transmission photodiode on the oscilloscope; when
locked, the transmission signal should remain near the peak
value observed when scanning the laser frequency.

The PID parameters must then be tuned to optimize the
lock. The goal is to maximize the amount of time for which
the laser remains locked and to minimize the amplitude of the

remaining fluctuations of the error signal. The optimal PID
parameters vary for each setup and depend on the parameters
of the feedback loop. Manufacturers of PID controllers often
have useful information in the provided manuals.22 Figure
6(c) shows our error signal when the laser is locked, with
RMS fluctuations of 0.14 V. Using the slope of the central
error signal peak from Fig. 6(b), which is 27 V =MHz, we
estimate that the RMS frequency fluctuations of our laser are
approximately 5 kHz.23 To further characterize the frequency
noise, one can analyze the full noise spectrum of the error sig-
nal, as done for instance in Ref. 24.

D. Measuring cavity finesse using the ringdown
technique

Once the laser is locked, it is possible to measure accu-
rately the cavity decay time s using the ringdown method,
which consists in abruptly switching off the incident beam to
the cavity and measuring the temporal decay of the transmit-
ted signal. Using an AOM, we shut off the light sent to the
cavity in less than 200 ns. Figure 6(d) shows the evolution of
the signal in transmission. Fitting the decay by an exponen-
tial, we measure a 1=e decay constant s ¼ 2:6ð1Þ ls, giving a
finesse of 2:5ð1Þ � 104, which is in good agreement with the
nominal finesse of the cavity (25 200).

IV. DISCUSSION

In this article, we have given an introductory overview
of both the conceptual background and practical setup of
ultrastable cavities for locking lasers. We believe this article
will be useful for students and researchers setting up ultrasta-
ble cavities for use in atomic and molecular physics experi-
ments. In addition, the material presented here could be
adapted for advanced undergraduate instructional laboratory
courses to design several projects, such as coupling and
mode matching into the cavity, including imaging the
higher-order modes (Sec. III B); locking the laser using the
PDH method (Sec. III C); measuring the finesse of the cavity
using the ringdown technique (Sec. III D); and investigating
the temporal response of the cavity to frequency sweeps in
reflection and transmission (Appendix B). Such experiments
will give students exposure to many essential concepts in
modern experimental optics, including Gaussian beam
physics, signal modulation, the use of electro-optic and
acousto-optic devices, laser locking, and data analysis. We
emphasize that for such pedagogical applications, the state-
of-the-art equipment described here—such as an ultrastable
ULE cavity under vacuum, a fiber EOM, and a high-quality
ECDL—is not necessarily required. For instance, it is possi-
ble to build a (non-ultrastable) cavity of finesse ’ 20 000
using off-the-shelf commercial mirrors and a stainless steel
spacer within a budget of a couple thousand dollars,25 mak-
ing the experiments described in this article more accessible
to students in undergraduate laboratory courses.
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Fig. 6. (a) Optical setup for PDH locking of the laser to the cavity. We use a

Toptica DL-pro laser that outputs 80 mW and sends approximately 350 lW

to a fiber EOM (EOSPACE) modulated at 20 MHz by an arbitrary function

generator (Tektronix AFG 3022C). The reflection signal from the cavity is

sent to a photodiode (ThorLabs PDA10A-EC), and the photodiode signal is

amplified (Mini-Circuits ZFL-500þ) before being mixed (Mini-Circuits

ZAD-1Hþ) with a phase-shifted version of the modulation signal and sent

to the PID controller (Vescent D2-125). The error signal is monitored by an

output from the PID and is shown in (b) and (c). For (d) and (e), we use the

AOM (AA Opto Electronics at 80 MHz) to abruptly cut the light in the cav-

ity and measure the decay of the transmission signal; TSS is the intensity

transmission coefficient in the steady state. Fitting to an exponential decay

gives s ¼ 2:6 ls.
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APPENDIX A: HIGHER-ORDER GAUSS–HERMITE

BEAMS

For the sake of completeness, we include here the full
expression for the wave amplitudes of higher-order
Gauss–Hermite beams in cylindrical coordinates, which is

Em;nðr; zÞ ¼ E0

w0

wðzÞ exp �ikzð Þ

� Hm

ffiffiffi
2
p

x

wðzÞ

 !
Hn

ffiffiffi
2
p

y

wðzÞ

 !

� exp �r2 1

w2ðzÞ þ
k

2RðzÞ

� �� �

� exp �iðmþ nþ 1Þ tan�1 z

zR

� �� �
;

where wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

q
; k ¼ 2p=k is the angular

wavenumber, Hi are the Hermite polynomials, and the waist
is located at z¼ 0.9

APPENDIX B: CAVITY RESPONSE

TO A FREQUENCY SWEEP

To gain some insight on the origin of the chirped oscilla-
tions seen in Fig. 5(d), we vary the rate _�L at which we scan
the laser frequency. Figure 7(a) shows the calculated signal
that we would expect at very low scan rates (1 MHz=ms) for
a laser with zero jitter. Figure 7(b) shows the measured sig-
nal in reflection for the same scan rate. Instead of the
expected Lorentzian dip, we observe an erratic signal that
originates from the laser frequency jumping in and out of
resonance with the cavity, as the laser frequency fluctuates
erratically on the timescale of tens to hundreds of microsec-
onds during the applied linear scan.

As we increase the scan rate [Figs. 7(c)–7(e)], we focus on
time scales where the laser jitter is less noticeable, and the
signal becomes cleaner. As previously noted, the reflection
signal shows an oscillatory behavior with a chirp rate that
depends on the laser frequency scan rate, _�L. To quantify
this dependence, we measure the instantaneous frequency
�osc of the oscillations as a function of time and plot one
such measurement (for _�L ’ 700 MHz=ms) in Fig. 7(f).
From Fig. 7(f), it is clear that the oscillations have a linear
chirp, with a slope we denote _�osc. Plotting _�osc as a function
of _�L [Fig. 7(g)] shows that, to a very good approximation,
_�osc ¼ _�L: the instantaneous oscillation frequency increases
at the same rate as the laser frequency.

To understand better this behavior, we consider in more
detail Fig. 7(e). At times prior to approximately 11 ls, the
laser is off-resonance, and the intra-cavity field is zero. We
thus see the cavity’s expected response: all incident light is
reflected. Around 12 ls, the laser becomes resonant with the
cavity, and we observe a dip in the reflected signal as we inject
light into the cavity. After this initial dip, the incident laser

frequency continues to scan away from resonance. We then
observe oscillations due to the beating of two fields: the reso-
nant field Ecav at frequency �0, which has built up within the
cavity and is leaking out the first mirror, and the reflected inci-
dent laser field Einc, whose frequency �LðtÞ is sweeping away
from resonance. These two fields beat at their different fre-
quency: �oscðtÞ ¼ �LðtÞ � �0, thus explaining the observed
relationship _�osc ¼ _�L. We can express the measured intensity
in reflection as Iref / jEcav e�t=2s þ Eincj2, where s is the 1=e
lifetime of the intracavity intensity. The oscillating term that
we observe in the signal arises from the cross-terms and is pro-
portional to jEincj jEcavj e�t=2s. By contrast, in transmission,
the measured intensity is given by Itr / jEcav e�t=2sj2
¼ jEcavj2 e�t=s. Thus, in transmission, we expect a signal that
decays as e�t=s, twice as fast as that in reflection, which decays
as e�t=2s.

To confirm this interpretation, we compare in Fig. 8 the re-
flected and transmitted signals for a scan rate of 300 MHz=ms.
In transmission [Fig. 8(b)], the signal starts at zero when the
laser is off-resonance and then peaks on resonance, as
expected. It then decays as the intra-cavity field leaks out.
During the decay, the signal exhibits similar oscillations as in
reflection, albeit with smaller amplitude. Direct interpretation

Fig. 7. Measured reflection coefficient R for different laser frequency scan

rates. (a) Calculation of reflection intensity for _�L ’ 1 MHz/ms. (b)

Measured reflection signal for _�L ’ 1 MHz/ms showing the widening of the

resonance relative to (a) due to laser jitter. (c)–(e) Measured reflection sig-

nals for increasing frequency scan rates, showing that the oscillations

increase in frequency with the scan rate. (f) Measured instantaneous oscilla-

tion frequency for _�L ’ 700 MHz = ms. As shown, the oscillation frequency

is a linear chirp whose slope gives the measured value of _�osc. (g) Measured

values of _� osc for different values of _�L, with the gray line representing

_�osc¼ _�L.
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in terms of beating between different fields is less simple to
understand than in reflection, but fitting the decay confirms
that it is indeed exponential with time constants in reflection
(sref) and transmission (str) related by sref ’ 2str. For the data
in Fig. 8, we find that sref ¼ 4 ls and str ¼ 2 ls. The time
constant str is close to the expected value of 2.67 ls for the
cavity decay time s calculated from the cavity’s nominal
finesse of 25 200 [see Eq. (3)]. Measuring the decay constant
of the overall envelope in reflection or transmission thus gives
a simple way to estimate the finesse of the cavity, though with
less accuracy and precision than the (more involved) ringdown
technique that we describe in Sec. III D.

Figure 8 calls for two other observations. First, the reflec-
tion signal has a significantly better signal-to-noise ratio than
the transmission signal; this is due to heterodyning. The
small intracavity field leaking out the first mirror is hetero-
dyned with the relatively large reflected field, which has a
much greater amplitude, leading to a better signal quality
than the transmitted signal. Additionally, in both reflection
and transmission, the change in instantaneous frequency of
the oscillations is found to be equal to the laser frequency
scan rate. For more quantitative models, see Refs. 26–29.

a)ORCID: 0000-0002-2528-8501.
b)ORCID: 0000-0002-2260-9859.
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